How to Fit the Data to a 2nd Degree Polynomial

The first step is to generate three equations in three unknowns by plugging the points (2, 469), (3,615), and and (4, 1,058) into the equation $y = ax^2 + bx + c$:

 $a(2^{2}) + 2b + c = 469$ $a(3^{2}) + 3b + c = 615$ $a(4^{2}) + 4b + c = 1,058$

Simplifying, we get:

4a + 2b + c = 469 9a + 3b + c = 615 16a + 4b + c = 1,058

We can eliminate the c variable by subtracting equation 1 from equation 2. Similary, we can eliminate the c variable by subtracting equation 2 from equation 3. This yields two equations in two unknowns:

We can now eliminate the b variable by subtracting new equation 1 from new equation 2:

2a = 297

Dividing both sides by 2 yields:

a = 148.5

Then we can plug a = 148.5 into one of the equations in two unknowns to solve for b:

(5)(148.5) + b = 146 742.5 + b = 146 b = 146 - 742.5 b = -596.5

Then we can plug a = 148.5 and b = -596.5 into one of the three original equations and solve for c:

(4)(148.5) + (2)(-596.5) + c = 469 594 - 1,193 + c = 469 -599 + c = 469 c = 469 + 599 c = 1,068

Thus, the polynomial equation that passes through the points is: $y = 148.5x^2 - 596.5x + 1,068$.

An alternative approach is to represent the system of equations in matrix form and use Excel to do the heavy lifting.

4	2	1	а		469
9	3	1	b	=	615
16	4	1	с		1,058

We can then use the MINVERSE function in Excel to find the inverse of the 3x3 matrix shown above:

This saves time because finding the matrix inverse using algebra is time-consuming. In fact, solving the matrix problem by hand is probably more time-consuming than solving the system of equations.

Now, we can rearrange the equation so that the [a,b,c] vector is equal to the inverse matrix shown above times the [469,615,1058] vector:

а		0.5	-1	0.5	469		148.5	
b	=	-3.5	6	-2.5	615	=	-596.5	
с		6	-8	3	1,058		1,068	

Note the matrix multiplication involves multiplying each element in the matrix horizontally by each element in the vector vertically, and then adding. For example, 148.5 is determined as:

(0.5)(469) + (-1)(615) + (0.5)(1,058) = 234.5 - 615 + 529 = 148.5

Note the values of [a,b,c] = [148.5, -596.5, 1,068] are the same answers as solving the system of equations.

Press the back button to return to the blog entry. If you press the x, you'll have to start over.